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Ecole Polytechnique Fdddrale de Lausanne, Institut de Physique Theorique, PHB-Ecublens, 
CH-1015 Lausanne, Switzerland 

Received 9 May 1989 

Abstract. We study the n-component p4 model in space dimensions 2 S d S 4, for various 
values of n using the Wilson recursion formula. In two dimensions, asymptotic freedom 
is seen when n D 3, whereas a phase transition occurs for n = 1, with the Ising-type value 
for the exponent Y. Approaching two dimensions, the model is shown to tend to the 
corresponding nonlinear u-model Sn-, . The value of the exponent Y compares well with 
the first-order d - 2  expansion. An extension due to Golner, in the scalar case, of the 
recursion formula and giving an exponent 7 Z 0, is generalised to the vectorial case. It is 
solved numerically for 2 G d S 4. In three dimensions the value obtained for 7 is the same 
within the error bars as the one computed by field theoretic techniques or high-temperature 
expansions. The value of 7 in the k ing  case, when d = 2, compares well with the Onsager 
value. 

1. Introduction 

The study of the n-component q4 model and the corresponding nonlinear a-models 
has played a central role in the modern theory of critical phenomena. They have 
allowed rather precise determination of critical exponents by means of various perturba- 
tive techniques, either in the space dimension d (4 - d or d - 2 expansion) or high- 
temperature expansion. In the study of more complicated models, like the matrix 
nonlinear a-models, such techniques are rarely available or are of unchecked validity. 
In such a context, it appears useful to develop more global approaches to the critical 
behaviour. In fact, when he introduced the RG technique to handle the critical problem, 
Wilson [ 13, using a phase-space cell analysis, introduced an approximate recursion 
formula, which he solved numerically for the scalar case in three dimensions, from 
which he obtained rather good values for the Ising critical exponents, except the 
exponent 77, which was taking the value 0 in his approximation. This last defect was 
corrected by Golner [ 2 ]  who introduced an improved recursion formula which produced 
a good value for the exponent 7) of the Ising model in three dimensions. To our 
knowledge at least, since that time there has been no systematic study of the Wilson 
formula for the vectorial case, and in two dimensions, where the number of components 
of the vector is expected to play a crucial role. We have undertaken such an analysis 
and found the critical behaviour for general n in three dimensions. We have also 
studied these models when the dimension approaches two. We find that there is no 
phase transition in the non-Abelian case for n 2 3 or, in other words, asymptotic 
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freedom, in agreement with analytical studies. In the Ising case ( n  = l ) ,  we find a 
transition, with a value for the exponent Y in reasonable agreement with the Onsager 
value. Our study also shows in a very neat way how the ‘p4 model near the critical 
point is transformed into the nonlinear a-model S,-l when the dimension approaches 
two. It also allows one to compare the results with those of the d - 2 expansion, which 
appear to be correct to first order, but of limited validity. 

Despite these astonishing successes of the Wilson formula, it suffers from the 
drawback of giving 7 = 0. In order to get a non-zero value for this exponent, we have 
generalised Golner’s approach to the vectorial case and improved its determination 
of some dimensionality-dependent constants. The recursion formula becomes much 
more involved in this case. Using rotational invariance, it can be reduced to the study 
of the transformation of three functions. We have solved these equations numerically 
in three dimensions and also near two dimensions. In three dimensions, the values 
obtained for the exponent do not differ too much from those given by the Wilson 
formula, but the values obtained for 7 when they are compared with those given by 
the most sophisticated field theoretic techniques or high-temperature series are in 
impressive agreement. In two dimensions, for the Ising case, there is good agreement 
with the Onsager value. On the other hand, when we approach two dimensions we 
do not get fixed points for systems with a continuous symmetry n 3 2 .  

It is worth pointing out that the Wilson recursion formula is exact when the usual 
lattice Laplacian is replaced by a hierarchical one. For the Golner recursion formula, 
there does not seem to exist a hierarchical-type Hamiltonian for which it becomes exact. 

In conclusion, it seems that non-perturbative, although approximate, approaches 
to critical behaviour, like that of Wilson and its extension by Golner are rather powerful 
tools when applied to vectorial nonlinear a-models. One can therefore reasonably 
expect them to prove useful in the analysis of more complicated models, like Grassman- 
nian nonlinear a-models, which were the original motivation of our study. One should 
not, however, underestimate the computational difficulties that such extensions would 
present since, from this point of view, the vectorial models that we have studied are 
already highly non-trivial. 

2. The Wilson formula 

2.1. Introduction 

The goal of the Wilson formula is to perform a sharp but simple approximation of 
the renormalisation group (RG). It was derived by Wilson [ I ]  by using a functional 
integration method and a division of space in cells. Polyakov [3] gave a derivation of 
this formula by using the Feynman graph expansion, closer in spirit to the RC as 
applied in field theory. On the other hand, as was first realised by Baker [4], the 
Wilson formula becomes exact for the hierarchical model introduced previously by 
Dyson [ 5 , 6 ] .  In such a model the usual discrete Laplacian A is replaced by an operator 
which is such that its inverse displays the same long-distance behaviour as A-’  and 
decimates exactly under a RG transformation. Rigorous result about this model have 
been obtained by Bleher and Sinai [7], Collet and Eckmann [8], and by Gawedzki 
and Kupiainen [ 9 ] .  

Within this approximation, we consider a family of Hamiltonians 

H = ddx +(V(p)’+ Q ( q )  (1)  



Renormalisation group analysis of the n-component model 1001 

and the Wilson formula is a recursion equation for the new potential Q' at the new 
scale x' = x /  L 

with 

I ( c p ) : =  dy exp(-y'-Q+(cp,y)) Q + ( c p , y ) : = ~ ( Q ( c p + y ) + Q ( c p - y ) )  (3)  

a z d - 2  L = 2 .  ( 4 )  

To compare with the usual A q 4  RG, which is done perturbatively in A and in E = 4 -  d 
and where we calculate the lowest-order graphs exactly, the diagrammatic derivation 
of Polyakov shows that the new potential already includes an infinite number of graphs, 
but not all the possible graphs, and each included graph is approximated. Thus, we 
have another point of view on the RG. Moreover, in (2) the spatial dimension d appears 
as a parameter, giving us the occasion to have solutions non-perturbatively with the 
dimension. In deriving ( 2 )  we neglect all dependence on V q ,  which makes the formulae 
simple, but we always have a = d - 2  or 

I 

7?=0 ( 5 )  

which means that the anomalous dimension of the field is identically zero. 
This formula is not 'unique', in the sense that we could take other forms for Q', 

for example the non-symmetrised form Q' = Q( q + y )  used by Gallavotti. Neverthe- 
less, this expression for Q' is natural for a RG realised as a modification of the cutoff 
in k space. There is still the parameter L in the formulae, which could a priori be 
chosen in 31, CO[, but the two terms on the right in the definition of Q' are linked to 
the choice L = 2.  As already discussed by Wilson in [ 13, this value is a good compromise 
between 'no coarse graining' ( L =  1) and 'too much coarse graining' ( L + c o ) .  In this 
work, we will always take L = 2, but retain the L dependences up to the final formulae. 

Now, we are interested in second-order phase transitions, i.e. the fixed points of 
the Wilson formula. We can quickly check that Q = 0 constitutes a trivial fixed point 
of ( 2 ) .  In searching for a non-trivial one, we can follow the text book calculation for 
the potential Q ( q )  = mq'+ A q 4  and calculate perturbatively in E = 4 -  d. At the lowest 
order, we find the usual critical exponent for the mass 

1 ~ n + 2  v=-+-- 
2 4 n + 8 '  

In the next two subsections we will explore other ways of finding non-trivial fixed 
points of (2),  namely a 2 +  E expansion and a systematic numerical study. 

2.2 Expansion in d = 2 + &  

The physical idea which is behind the d = 2 1  E expansion is that a system with a 
continuous symmetry undergoes a phase transition for a temperature T = O( E ) ,  and 
that the effective potential concentrates the vector 9 on a sphere of radius 1. In other 
words, close to two dimensions, p +CO and the vectorial model R" tends to a nonlinear 
a-model S,-l = O ( n ) / O ( n  - 1). The difficulty of this calculation is that, for d + 2 ,  the 
weight exp(-Q(q))  tends to S ( q * -  11, which is singular. Hence, by contrast with the 
4 - E expansion, this calculation is not a perturbation of a trivial fixed point. This idea 
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has already been used by Gawedzki and Kupiainen [9] to prove the asymptotic freedom 
of the S,  model in dimension 2, but they used the non-symmetrised form for 0’. To 
compare with the method used in field theories for the nonlinear a-model, the present 
method could be called ‘extrinsic’ because the sphere S,-, is simulated by a potential 
in the bigger space R“. The usual ‘intrinsic’ method is to eliminate the constraint 
induced by the manifold, i.e. to introduce a coordinate system on the sphere. By doing 
that, we lose the thickness of the manifold. We will come back to this method when 
discussing the Golner equations. 

As temperature plays an important role, let start with the Hamiltonian 

P H ( ~ ) =  J d d x [ p 8 v 4 ) 2 + P d 4 2 -  1)l (7) 

and the potential u(x) has a very strong minimum when the argument is zero, i.e. for 
4’= 1. We choose the normalisation constant of the potential such that u(0) = 0. With 
the rescaling @4 + Q and the definition Q(x) := pu(x/P) ,  we are left with the standard 
Hamiltonian 

H =  ddx[!(OV)’+ Q ( Q ’ - ~ ) ]  J 
and now the potential shows a strong minimum around cp2 = p. We define 

and the condition for the minimum is 

By rotational invariance of the Hamiltonian, we can take Q in the first direction. We 
denote the vector y by y = (yl l ,  y ,  * e,) and e, is a unit vector perpendicular to Q. With 
this notation, the Wilson formula becomes 

( . f Y V 2 - P w 2 L - d  

= C  dyll JOE dy, y:-’exp(-y:-y~)f(cp’+y:+y;l+2VyIi-P) 
-02 

X f ( v 2 + Y :  +Yi;-2QY,i - - P ) I p L - % .  

The new variable p’  is dejined by the condition 

This condition means simply that the minimum off’ is at zero, in other words we stay 
in the set of the considered functions. We define the new variable 

(13) x := $- Lap 

and we suppose that x is O(po)  

Q = JL”p + X La/’@. 

It is more convenient to work with the shift of the minimum a = O(po) defined by 

X+LCla:= cp2-p’ (15)  
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and we have the relation between p, p'  and a 

where we used a = d - 2  (and 7 = 0). Introducing this definition and approximation 
in ( 1  l ) ,  making the change of variable 2L"2@yll + yll , and supposing that f (yII) decays 
faster than exp(-yi/p) for p + CO, the recursion equation for f becomes 

X f (L-*x + Y? - Y 1,) (17 )  

with the conditions af(0) = 0 and af'(0) = 0, the second one fixing a, together with the 
equation (16 )  for p'  and the constant being fixed by the constraint f '(0) = 1 .  It is not 
at all obvious that a fixed point of this equation exists. 

When a fixed point of (17 )  exists, equation (16 )  is of the same form as that given, 
to lowest order in d - 2, by field theoretic techniques. It has a fixed point p* = 
a / ( d  - 2) In 2 if a > 0 with the corresponding exponent v = l / ( d  - 2), which is the 
standard value, to lowest order in E. It remains to compute a. We do this approximately. 
Thus, we take the simplest function Q with the right properties 

Q(x)  = Ax2. (18 )  

To discuss this fixed point, it will be convenient to introduce the auxiliary function J,, 

J,,(x):= Iom dyy" exp(-y4-xy'). 

With an integration by parts, we obtain 

and 

With this simple form for Q, we can perform the integration on yli in equation (17 ) ,  
and obtain the new potential 

L - d Q ' ( ~  + Lea) = Ax2 -In Jfl-z - (2A.2 '> lx_jll. 
The value of a is fixed by the condition aQ'(0) = 0 at x = -L"a 

The next term of the Taylor expansion of Q' around -Lea gives A '  
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By using the recursion equation for Jnt2 and the equation for a, we find 

and the new potential at second order is Q'( x - L o a )  = LdA ( a  - ;( n - 3))(x - L"a)'. At 
the fixed point, the condition A ' =  A gives an equation for a that could be solved 

( 2 6 )  

This result can be compared with field theory (see for example the book by Amit [lo]) 
a = n - 2.  The fact that the coupling constant t *  = 1/P* -f 0 when d -f 2 is interpreted 
in field theory as asymptotic freedom in ultraviolet at dimension 2. In statistical 
mechanics we say that the phase transition temperature is going to zero. 

In this approximation we see that Wilson formula predicts no phase transition in 
d = 2,  when n 5 3, in agreement with the exact result, obtained perturbatively in d - 2.  
The numerical results presented below will confirm this prediction. The case n = 2 ,  
where the topological phase transition of Kosterlitz and Thouless should occur, seems 
to be out of reach of the Wilson formula. On the other hand, when n = 1 this formula 
reproduces the results of the Ising model. 

This calculation could also be done with the variable 4 and the Hamiltonian (7),  
but with some more care because 

a = $ ( n  - 3 + 2 ~ - " )  = $ ( n  -:I, 

This shows that f is a function that could be regular, and a singular distribution 
S(4'-1) for 4 is obtained in the above limit. 

This calculation shows that the Wilson formula has kept the essential part of the 
RG, even in such a difficult case as the 2 +  E expansion. This, and the usual 4- E 

expansion, will be well illustrated by numerical solutions presented in the next subsec- 
tion. In particular, this shows how the system, at the fixed point, goes from a vector-like 
model close to four dimensions to a nonlinear cr-model close to two dimensions. 

2.3. Numerical resolution of the Wilson formula 

2.3.1. Numerical problems. The RG transforms a problem of phase transition into the 
study of a flow of Hamiltonians, i.e. it transforms a problem where the correlation 
length diverges in another one where the computational time diverges. Thus, it is 
essential to find an efficient algorithm to keep the computational time in reasonable 
bounds. Moreover, we want to find fixed points for different dimensions and numbers 
of components with a more efficient method than the original one used by Wilson. 
For the discussion, we will keep in mind the picture presented in figure 1. 

One of the difficulties is that the fixed point is of codimension one, but we will 
use this fact to construct an efficient algorithm. The principle of the method is to take 
a starting potential Qo and iterate the Wilson transformation. First, we will go in the 
direction of the searched-for fixed point, and then along the unstable manifold to the 
low- or high-temperature fixed point. Because the iteration is going exponentially fast, 
after a sufficient number of iterations we can decide on which direction we are driven 
by the flow of the RG, and choose a new starting potential closer to the stable manifold. 

One of the obstacles to turning this idea into an algorithm is that there is no natural 
metric on the space of Hamiltonians. Several 'norms' have been tried (strictly they 
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Figure 1. Spatial relationships between the different manifolds and the corresponding 
renormalisation group trajectories to the fixed point. 

are not norms because they do not satisfy the triangular inequality). Close to the fixed 
point, they give equivalent results, but far from it we have problems. After many 
attempts, a good choice is 

and the distance between Q and its iterate Q' is given by 11 Q - 0'11. Now with this 
distance, we can measure how close we are from the fixed point. 

For the starting manifold, we take two potentials Qo and Q1, such that the iterations 
of Qo cross the high-temperature manifold and those of Qi cross the low-temperature 
manifold. The linear combination Qm = aQ, + (1 - a ) Q o  needs to cross the stable 
manifold. Thus, we can surround the intersection of the two manifolds by Qa, and 
Qa,,  Moreover, if the distance between the j t h  and the ( j  + 1)th iterations of Qo is 
decreasing for j between 1 and a j fp ,  that means that we are approaching the fixed 
point and we can take as the new functions Qo or Q , ,  the j,, iteration of Qa. This 
process is illustrated in figure 2 .  

In that way, the starting manifold approaches the fixed point by following the flow 
of the RG and uses to its advantage the dilating direction of the flow. At the initialisation, 
we take Q of the form Qo = mocp2+Aq4 and Q1 = mlcp2+Acp4. This way of working is 
particularly suitable when the manifold mcp2+Acp4 is far from the fixed point, for 
example when the dimension is close to 2 .  

Another difficult problem is the choice of the stopping manifold, i.e. giving a 
criterion to decide that the flow is driving us to the low- or high-temperature region. 

Figure 2. Choosing the new functions Qb and Q ;  as the iterations approach the fixed point. 
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In fact, it is difficult to give in a simple way a manifold which is only on one side of 
the stable manifold, or at least on a big enough part of the space of potential close to 
the fixed point. After several attempts, we took the manifolds 

low-temperature manifold: I = I,,, high-temperature manifold : I = I,,, . 
At the beginning, we place these manifolds far from the estimated fixed point. If, after 
having passed close to the fixed point, the number of iterations up to the crossing of 
the stopping manifold is big enough, we can safely move them towards the fixed point. 

Thus, when it approaches the fixed point, the program will move the starting and 
stopping manifolds towards it, and so focus in the space of potentials around the fixed 
point, exactly in the same fashion as the RG does. With this algorithm, the number of 
iterations needed to find the fixed point at a given precision is kept small. 

However, when we go close to two dimension, the potential has a strong minimum 
and exp(-Q(cp)) becomes big enough to create overflows in the computation of the 
integrals. This is an important problem on a VAX, where the exponents are limited to 
37. To solve this, we subtract the minimum of c p 2 +  Q(cp) to the potential in the 
computation of the integrals. This is of no importance for the new potential, and we 
need to add min( c p 2 +  Q( cp)) to I or lnjl Q, - Qj.+, 1 1  (this explains why we take logarithms 
in this function). 

The exponent v is estimated by plotting lnll Q, - Qj+,Il/ln L as a function of j .  After 
the minimum of the curve, we fit a straight line by a least-squares method and the 
slope gives us 1/v. 

Numerically, the potential Q(cp) is given on a regular mesh up to a value cpmax. 
Between the points of the mesh, Q is interpolated by a + bcp + ccp2. To avoid numerical 
short-distance noise on Q, the interpolating function is fitted by a least-squares method 
on a fixed length (smoothing length). Beyond cpmax,  Q is extrapolated by a + ccp" and 
the parameters a, c and (Y are fitted by a least-squares method on the smoothing length. 
This is a non-trivial fit because (Y appears nonlinearly in the extrapolating function. 

By using the rotational invariance of the Hamiltonian, we can reduce the n- 
dimensional integral on y to a two-dimensional integral where n appears as a parameter. 
The two-dimensional integrals are computed by the standard Simpson algorithm and 
a part of the program needs to be adapted to the special case n = 1. 

2.3.2. Numerical results. We are left with two parameters in the problem, namely the 
number of components of the model n, and the dimension of space d. At the fixed 
point, it is interesting to know the potential Q(cp), the critical exponent l l v  and the 
probability of cp, i.e. 

P ( ( P ) = c  v"- '  exp(-cp'-Q(cp)) (30) 
and the constant is fixed by 5 P(cp) dcp = 1. We choose the following measurements: 

for n = 5  2 S d s 4  0, l/ v  
for n = 1 2 s d s 4  0, ll v  
for d = 3 1 s n S 2 0  p, l l v  

for d =2.1 l S n s 1 O  Q, 1/v. 
The graphs are given in figures 3-11, and we will comment on the results here. 
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\ I  
0 0 2  0 4  0 6  0 8  1 0  1 2  

Q 
Figure 3. Probability P of q for the one-component model in dimension d = 2.1 

I 

'p Dimension d 

Figure 4. Potential Q(q) at the fixed point for the 
five-component model, with the convention that the 
potential is zero at the minimum. In order of increas- 
ing dash size, we have the dimensions d =3.6, 3.3, 
3.0, 2.75, 2.3, 2.1 (full  curve). 

Figure 5. Critical exponent l / v  as a function of 
spatial dimension for the five-component model. 
The full circles display the numerical results, the 
lower-left straight line is the 2 +  E expansion, the 
upper-right line is the 4- E expansion, both to first 
order in E .  

0 1 2 3 i 
Q Dimension d 

Figure 6. Potential Q ( q )  at the fixed point for the 
one-component model, with the convention that the 
potential is zero at the minimum. In order of increas- 
ing dash size, we have the dimensions d = 3.6, 3.3, 
3.0, 2.75, 2.5,  2.3, 2.1 (full curve). 

Figure 7. Critical exponent l / v  as a function of 
spatial dimension for the one-component model. 
The full circles represent the numerical results, the 
straight line represents the 4-  E expansion to first 
order. The Onsager solution for the Ising model at 
two dimensions gives l / v =  1. 
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Figure 8. Probability P of q at the fixed point in 
three dimensions. In order of decreasing dash size, 
N e  have the models n = 1 ( fu l l  curve), 3. 5, 7 .  10, 15, 
20. 

0 2 4 v 6 8 I 10 

Figure 10. Potential Q ( q )  at the fixed point in 2.1 
dimensions. In order of decreasing dash size, we 
have the models n = 1 (full curve), 3, 5, 7, 10. 

0 5 10 15 20 
Number of components n 

Figure 9. Critical exponent 1 /  v at dimension 3 plot- 
ted against the number of components of the model. 
The full circles represent the numerical results. The 
full  curve denotes the 4- E expansion to first order. 

2 

I /v  1 

e 

* .  e 
e 

0 5 10 
Number o f  components n 

Figure 11.  Critical exponent l / v  at dimension 2.1 
plotted against the number of components of the 
model. 

The curves for the one- and  five-component models show well how we go con- 
tinuously with the dimension from a nonlinear a-model O ( n ) / O ( n  - 1) = $-, for d + 2 
to a cp4-like model for d + 4 .  This shows why these models should be in the same 
universality class. Moreover, this illustrates the common lore that close to the lower 
critical dimension (the dimension below which there is no ordered phase whatever the 
temperature is), the phase transition O ( n )  + O( n - 1) is dominated by angular fluctu- 
ations (the direction of q )  and the 'longitudinal fluctuations' (the norm of cp) is frozen, 
i.e. the phase transition is described by the nonlinear a-model S,-l. 

The usual field theory calculation keeps only the a priori relevant terms, and  for 
the calculation close to two dimensions it goes directly to the S,-l model, i.e. it takes 
a distribution like 6(cp2- 1). On the other hand, if we think of the RG in statistical 
mechanics as decimation, i.e. as averaging the field over some distance, it appears 
natural that by averaging vectors of length 1 we get a continuous distribution for the 
average vector (by the way, in order to perform an  average we need a least a vectorial 
space). This fact is well illustrated by P(p)  for n = 1 in dimension 2.1 given below, 
where we rescale cp so that the last maximum of P(cp) is at cp = 1. 

Close to two dimensions, the one-component model tends to the So model, i.e. to 
a model with the two values i l ,  or the well known Ising model. By performing a 
block spin average 'a la Kadanoff with two Ising spins, we obtain successively the set 
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of values f 1, f 1 0 ,  i 1 if 0, f 1 i: *+ ii 0, etc . . . and we see that the maxima of P (  cp) 
correspond to those values. But qualitatively it is what the Wilson formula does, for 
L = 2 .  We expect that at two dimensions, the fixed point is described by a singular 
distribution. 

Again close to two dimensions, but for the five-component model, we see that the 
minimum of the potential is going in the direction of large cp, which is equivalent to 
p + CO if we make the choice of normalisation of cp such that the potential is minimum 
at c p = l .  

The critical exponent 1 /  v behaves as expected, i.e. 
(i) the 4 - E expansion is valid; 
(ii) for the five-component model, the 2 + E expansion is valid and there is no 

(iii) for the one-component model, there is a phase transition at d = 2 .  
phase transition at d = 2 

We can also note that the 4 - E expansion at first order is valid up to E = 1 ,  and even 
for the one-component model up to E = 2 .  The latter is surprising because the potential 
is no longer cp4-like. This contrasts with the 2 +  E expansion at first order, which is 
not valid so far. 

The graphs for three dimensions show that 
(i) the exponent l / v  has the right dependence on n;  
(ii) for large n, P(cp) goes to a steep curve, but slowly. Thus, the l / n  expansion 

from n = CO will have bad convergence properties up to n = O( 1 ) .  
Finally, for dimension 2.1, the critical exponent 1 /  v shows that the one-component 

model has a phase transition at d = 2 ,  but there is no phase transition for n 3 3.  This 
compares well with the d = 2 + E expansion above, which puts the change of behaviour 
at n = 2.5.  This is equivalent to the statement that at two dimensions the models with 
n 3 3 are asymptotically free. 

3. The Golner recursion formula 

One problem with the Wilson formula is that it gives 7 ~ 0 .  Golner proposed an 
approximation in the same spirit of that of Wilson, which gives an exponent 7 # 0. 
The problem is to include lower-order corrections to the terms in 09 in the Hamiltonian, 
which are responsible for the small value of 77. Golner [2] derives this formula for 
the scalar case. 

3.1. Derivation of the formula by real space approximations 

The derivation presented here for the vectorial case mainly follows the method of 
Golner, which is an extension of the original method due to Wilson, in which the real 
space is divided into cells (weakly coupled). However, this extension for the vectorial 
model is not straightforward; therefore we will give the main idea below. We start 
with the Hamiltonian 

with cp E R", W(cp*) is a matrix of dimension n x n, typically of the form U+O(cp2) 
where the term O(cp2) small, -y, w are two constants; w will be fixed by the inverse of 
the volume of a cell. 
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We denote by i, j ,  k ~ ( 1 , .  . . , d )  the space indices and by p, y, p, v ~ ( 1 , .  . . , n )  

Roughly, the idea of the RG is to derive a new Hamiltonian at scale x /L  by 
the indices of cp. 

r. 

where y(x)  represents the fluctuations at small length scale (or large k) and cp‘(x/L) 
represents the new field, with fluctuations at the new scale x/ L (for the details see the 
review of Wilson and Kogut [7]). In order to derive an approximate RG, we divide 
the space in cells and decompose cp(x) on them 

The function $,(x) gives the fluctuations at the scale of one cell, as shown in figure 
12. The volume of the cell (block) is fixed by j x t B  ddx = l / w ,  and +(x)  is normalised 
by jxEBl+(x)12 = 1 and by j x s B  +(x) = 0. Now comes the extension with respect to the 
Wilson derivation of an approximate RG. We take cp’ ‘almost’ constant at the cell scale 

(34) P’(X/L) = ~ ’ ( x o / L )  + (x-xo)iai~’(xo/L) +f(x-xo) i (x-xO)ja ia jcp’ (xo/L)  

Figure 12. The function $(x) .  

where xo is the centre of the cell. The new terms Vcp’(x/L) and V2cp’(x/L) are small 
compared to cp‘(x/L) and give a coupling between different cells at the new scale x / L ,  
whereas we neglect all couplings between different cells at scale x 

5 ddxH[cp(x)]=C j d d x H ( + , ( x ) y , + L - Q ’ 2 c p ’ ( x / L ) )  ( 3 5 )  
m x t E,,, 

with B, the cell (block) number m and X / L E  B,. We obtain for the new Hamiltonian 

(36) 

and we can limit ourselves to calculating integrals in one cell. In order to be consistent 
with the approximations made on p’, we want to work at order V2. Now a long 
calculation takes place, and we give here directly the recursion relation for the rescaled 
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functions W and Q 

The arbitrary constant added to H' has been fixed such that Q(0)  = 0, but any other 
choice is possible. The condition W'(0)  = W(0) fixes the value of a, and we write as 
usual (Y = d - 2 + 7, in which 7 is the anomalous dimension of the field. In the present 
work, if not otherwise stated, we will take W(0) = 8. 

We recover the Wilson formula if we take W = Q  and if we neglect the term 
(aQ+/acp. dQ'/acp),. For W' we obtain W'= Ld-'-" U with the equation for a: 
W'(0) = I. They are satisfied for a = d - 2 and so for the Wilson formula we always 
have 7 = 0. This shows that in order to obtain 77 f 0, we need to take into account 
terms with the fluctuations of the potential. 

A trivial fixed point of the recursion equation is 

w=u Q = O  a = d - 2 .  (40) 
We recover here the Gaussian fixed point. 

A last remark: we notice that during the derivation of the recursion equations, we 
never used the particular structure of the field cp nor the symmetry of the Hamiltonian, 
except the discrete symmetry H(-cp) = H(cp). Thus, the recursion equations are valid 
for vectorial models as well as for matrix or other models. 

3.2. Evaluation of the constants 

We would like to evaluate the various constants U - ' ,  V, po,  p2 and C which appear 
during the derivation of the recursion equations. For this, we will make 'physical' 
assumptions about the elementary cell and about the fluctuation function +(x). Here 
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we proceed differently to Golner [2] who makes other assumptions in reciprocal space. 
We suppose that the elementary cell is spherical with a radius R 

Rd - 
d 

U-'  = [,,,, ddx = 

and a d  denote the surface of the sphere S d  at d dimensions (the general formula for 
d E R  is f l d  = 2 ~ ' ~ + " / ~ / T [ ( d  + 1)/2]). In the same fashion 

To evaluate po and p 2 ,  we suppose $(x)  has spherical symmetry, as shown in figure 
13, and lV$12=wli(r-d). The value of d is given by the condition I,,,, $(x)  = O  

- R  
R = = .  

Figure 13. A spherically symmetric form of $( r ) .  

With the approximations 

dd+l 

d r rd+ lS( r -d )=wf ld - , -  
d 

pz = I ddxxfIV$(2 =- 
d 

we can calculate C and p2 

d R  
d + 2  2d- ' /d  

c= vop,=- - 

R d + 2  
P 2 = j z T i 7 = p j  c. 

(43) 

(45) 

(47) 

For dimensions 2, 3 and 4, the ratio p 2 / C  is respectively 1,  1.05 and 1.06, therefore 
we can take p2 = C. Finally, there is still a constant to fix arbitrarily, and a natural 
choice is to take w = 1 :  
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For dimensions 2, 3 and  4 we obtain respectively the values C(2) = 0.20, C(3) = 0.23, 
C(4) = 0.27. We could also make other choices for the arbitrary constant, for example 
R = 1. 

3.3. The vectorial model 

3.3.1. Generalform of the Hamiltonian. Now we would like to find the precise structure 
of the Hamiltonian for the vectorial model. We take cp E R “  and impose the global 
invariance under rotation 

H(Rcp) = H(cp) V R € O ( n ) .  (49) 

The scalar quantities that could be constructed from cp and Vcp are q’, (Vcp)’, (cpVcp0)’ 
and all their polynomials. If we restrict ourselves to the order ( V q ) ’ ,  the Hamiltonian 
takes the form (31) and the invariance condition becomes 

Q(Rcp) = Q ( c p )  W(Rcp) = RW(cp)R’. ( 5 0 )  

We can easily check that the approximate RG given by (37)  preserves the rotational 
invariance under O ( n ) .  The general form for Q and W is 

Q = Q ( c p Z )  W=f(cp2)  * j + g ( ( O 2 )  * cp x 9 ( 5 1 )  

with A g ,  Q scalar functions of cp’ and f(0) = 1. These three functions will be evaluated 
numerically at the fixed point for different values of n and for different dimensions d. 
For the expansion around the Gaussian fixed point (4 - E expansion), we approximate 
these functions by 

r 

Q = mcp2+Acp4+ r,cp2’ f=l+scp’  g = q  
J = 3  

and we use the shorthand notation cp2’ = (9’)’. 
On the other hand, the above form for the Hamiltonian (31 )  and (51 )  is quite 

interesting in view of a d = 2 + E expansion. In fact, when we study the S ,  nonlinear 
U-model viewed as a vector of length 1 in Rn+’, and we eliminate the constraint [ l l ,  121, 
i.e. we introduce a coordinate system around a pole [ 131, then we obtain a Hamiltonian 
of this form. Then after having introduced a magnetic field and  using the Golner 
formula as an approximate RG, we recover the results of Brkzin et a1 at lowest order 
in E.  

3.4. d = 4 - E expansion 

We aim at finding for the vectorial model a non-trivial fixed point for the recursion 
equations close to the Gaussian fixed point. The standard d = 4 -  E perturbative 
expansion is used, and  in order to simplify the calculations, we introduce at the very 
beginning the right order in E for the coefficients of Q and W in ( 5 2 )  

m, A - O( E )  rJ - O( E ’ )  s, q - O( E 2 ) .  

For convenience, we gather here all the recursion equations in which we have used 



1014 H Kunz and G Zumbach 

a = d - 2 + 7 7  and v = O ( e 2 ) :  

m’= L2[m + A (  n + 2 )  + ( q  + n s ) / 2  - mA( n + 2 )  - A’( n + 2 ) 2 ]  

A 1 = ~ 4 - d  [ A  - A 2 ( n + 8 ) ]  

The relation 1 = . . . comes from the condition f(0) = 1 and fixes 7. As a particular 
solution, we recover the Gaussian fixed point m = A = rj = s = q = 0 with a = d - 2,  
7 = 0. We get for the two critical exponents 7 and v 

1 & n + 2  
U = - + - -  

2 4 n + 8  

7=&L--- 6 C l n L  n + 2  
L 2 - 1  ( n + 8 ) ”  

(54) 

( 5 5 )  

These exponents can be compared with the standard field theory result as obtained 
by Brezin et af [14, p 2061, with the method of dimensional regularisation. It is quite 
remarkable that such a simple formula as the Golner one gives, at lowest order, the 
right dependence in E ,  the right dependance in n, an exponent v exact (as is already 
the case with the Wilson formula) and an exponent 7 which differs only by a numerical 
constant 6C In L / (  L2 - 1) = 0.35 (for C = $ and L = 2 )  compared with 4 = 0 .5 .  

Otherwise, we would like to follow numerically the non-trivial solution starting 
from d = 4  up to d + 2.  In particular, because of the searching algorithm we are 
interested in the codimension of the fixed point. The problem may come from the 
coefficients rj which have exponent 

y;’ = d - j a  = d ( l  - j ) + 2 j  ( 5 6 )  

and y;’ < 0 for d < d,( j )  = 2 + 2 / (  j - 1). At zero under in E ,  the coefficients r , ,  r4, r 5 ,  . . . 
become successively relevant for dimensions 3 , 2  + 3, 2 + 5, . . . . Thus, we want to 
calculate at first order in E the exponents yl,’ and, after an analysis in powers of E ,  

we see that the relevant contribution is given by the term rjA corresponding to the 
diagram 

The combinatorial factor which comes from the expansion of the exponential is 4 x 2 = 1 
and the contribution of this diagram is 

2 j ( ( ( ~ ~ ’ - ~ y ~ +  2j(  j - I ) ~ p ” - ~ ( ( c p y ) ~ )  - ( ( p 2 y 2 +  2 ( ( ~ y ) ~ ) ,  = cp2’j( n + 6 j  - 4). 
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We obtain the exponent of rj at first order in E 

n + 6 j - 4  
n + 8  ' 

y L 1 = d - j ( d - 2 ) + ( d - 4 ) j  

n-component model 1015 

(57) 

Finally, for all j ,  for 2 s  d S 4 ,  then y;' < O  and all the variables r, are irrelevant at 
first order in E.  Thus, the fixed point bifurcating at d = 4 should be of codimension 
one up to d = 2.  

3.5. Numerical resolution of the Golner formulae 

3.5.1. Explicit form of the recursion relations. To find numerical fixed points of equations 
(37) for the vectorial model (51), it is essential to use the rotational symmetry to obtain 
iteration formulae in which the number of components n of cp appears only as a 
parameter. We take R in O ( n )  such that 

cp = 9% e,  = (1,0,0, . . .) ( 5 8 )  

with the notation cp = 119 / I .  Thus we have 

We make the same rotation on y 

y =  Ry' Y '  = (Yll, Y ,  e,) e, * e, = 0 (60) 

and obtain y * cp = cpy' * R f  e , - - cpyl,. The integrals on y transform themselves into 
integrals on y' and by using the residual symmetry under O( n - 1 )  for y ,  and O( 1) for 
Yll 

I,.? d"y = 2nn-2 lo= dY, Y Y 2  lo= dYlI* (61) 

The + operator is 

and the measure which appears in the averages is 

p =Yw(cp)Y + Q+(cp,Y)  = Y : f ( c p )  + Y i ( f ( d +  cp2g(cp)) + Q + ( c p 2 + Y 2 ,  (PYII). ( 6 3 )  

Now n is just a parameter and these formulae allow us to calculate Z(cp). According 
to the same idea, we have still to obtain an explicit form for W ' ,  i.e. for f' and g'. 
However, the calculations are quite long and the formulae cumbersome; therefore we 
do not give this piece of algebra. We just want to add that, in some terms, the limit 
(p + 0 is of the kind 0/0 and has to be removed by using 1'Hospital's rule. 

3.5.2. Numerical problems. In order to solve numerically the Golner formulae, we 
have to overcome at least all the problems of the Wilson formula and some specific 
ones as well. In particular, the convergence problem is more difficult, because the 
space of Hamiltonians is bigger, i.e. there are three functions instead of one. Moreover, 
close to two dimensions, as we get closer to the fixed point, some oscillations appear 
with the interations of the kind ]IQ, - Q n - , l l  - cos (wn)  exp(-yn), y small. Compared 
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with the Wilson formula, the computational times increase dramatically because we 
need to calculate 17 integrals instead of one for each iteration, and the convergence 
is slower. Thus, it is essential for this problem to use an efficient algorithm. We use 
essentially the same method as developed for the Wilson formula, with the natural 
replacement of the ‘norm’ by 

A specific problem of the Golner formulae is the numerical approximations in the 
computation of the fluctuations. More specifically, the three functions f, g and Q are 
known only on a given mesh. When we compute the new functions after one iteration 
of the renormalisation group, we obtain the new ‘exact’ functions, up to a numerical 
noise coming from the mesh and from the fact that the integrals are computed with a 
finite number of points. This is not important in the Wilson formula in which there 
is only one integral which will average this noise. By contrast, in the Golner formulae, 
averages of squares of derivatives in the computation of W’ appear and, if we d o  not 
take precautions, we will obtain essentially the fluctuations of the numerical noise 
instead of the fluctuations of the functions. Thus, it is very important to smooth the 
functions, and this is done thanks to the procedure described in section 2.3.1. This 
method works correctly if the smoothing length is greater than the lattice spacing and 
at least in the range of variation of the functions. 

Another difficult problem is to compute the new functions f and g at cp = 0 and 
for cp close to  zero. This is important because the exponent 77 is given by the condition 
f’(0) = 1 .  As we mention above, the indeterminations of the singular terms 0/0 at cp = 0 
are removed with 1’Hospital’s rule. Thus, we need to write a specific integration 
subroutine for this point in which, moreover, we have to remove the singularities of 
the integrands at y = 0. Now, for small cp, we have to compute expressions of the kind 
( h  (cp))/ cp with ( h  (cp 1) + 0 by symmetry. Because the symmetries are not completely 
respected in the numerical computations, the function (h(p))  does not go to zero, and 
the term (h(cp))/cp becomes singular for cp small. Then the idea is to calculate 
( ( h ( p ) ) - ( h ( O ) ) ) / p  in which ( h ( 0 ) )  means the numerical computation of (h(cp)) at 
cp = O .  We proceed in the same way for the l / p 2  singularities, and we check that 

f ( c p )  (g lcp))  goes to f ( 0 )  (g(0)) for cp + O  at least with a small discrepancy. 
Beyond the mesh, it is more difficult to extrapolate the functions f and g than the 

potential 0, which has a typical behaviour. We use the same extrapolating function 
as described in section 2.3.1 for Q, but with a rougher fit of the parameters. Finally, 
a part of the program needs to be adapted for the much simpler case n = 1 .  

3.5.3. Numerical result. The Golner formulae explicitly depend on the dimension as 
the Wilson formula and also through the two constants C and p. Nevertheless, for 
dimensions between 2 and 4, C and p depend weakly on the dimension, so we fix for 
the numerical calculations 

C = p = ’  4. (65) 

Below two dimensions, C and p differ noticeably from the value, and we have done 
a set of calculations for the one-component model close to two dimensions with the 
constants C and p calculated with the formulae (47) and (48). 
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d d 

Figure 14. Critical exponent I /  U as a function of 
space dimension for the five-component model. The 
full curves represent the 2 +  E and 4- E expansions 
to first order; the broken curve represents the 4- E 

expansion at order E ~ .  

Figure 15. Critical exponent 77 as a function of space 
dimension for the five-component model. The full 
curves represent the 2 +  E and 4- E expansions to 
first order, and the broken curve gives the 4 - ~  
expansion to order E ~ .  

v 
Figure 16. Probability P of q at the fixed point for the one-component model. In order 
of increasing dash size we habe the dimensions d =3.6,  3.3,  3.0,  2.75, 2.5,  2.3,  2 .0  and 1.7 
(full  curve). 

In order to be able to compare the numerical results obtained with the Wilson and 
Golner formulae, we chose to make essentially the same measurements: 

for n = 5 2 s d s 4  1/y,  77 

for n = l  1.7 s d s 4 p, 1/v,  77 

for d = 3  1 s n s 2 0  Q, fi g ,  P, 11 U, 7. 

See figures 14-22. 
It has not been possible to get fixed points close to two dimensions for the models 

with a continuous symmetry. The reason is that the functions fi g and Q developed 
singularities for d + 2 .  By contrast, the model with discrete symmetry n = 1 stays 
perfectly smooth when the dimension decreases and it has been possible to obtain 
fixed point down to d = 1.7. 

It is more difficult to run this program compared with the Wilson program because 
the computational times are much bigger and the convergence less robust. However, 
when we can compare the results, i.e. for Q, P and the exponent 1 /v ,  they show no 
significant differences, except for n = 1 close to two dimensions. We will now discuss 
in detail each set of data. 
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Figure 17. ( a )  Critical exponent 1 / v  as a function of spatial dimension for the one- 
component model. ( b )  Critical exponent 77 as a function of spatial dimension for the 
one-component model. The open circles represent the results of the calculations with 
C = p = a  and the open squares represent the results of the calculation with C(S) and p ( d ) .  
The full  curve denotes the 4 - - ~  expansion to first order, and the full  circle represents 
Onsager's result. 

-201 ' 1 I .  

0 2 4 6 0 0 2 4 6 8 
Q v 

Figure 18. Potential Q(p) at the fixed point at three 
dimensions. In order of decreasing dash size, we 
have the models n = 1 (full  curve), 3, 5 ,  7 ,  10, 15, 20. 

Figure 19. The function f ( p )  at the fixed point at 
three dimensions. In order of decreasing dash size, 
we have the models n = 1 (full curve), 3, 5 ,  7 ,  10, 15, 
20. 

The potential and P ( q )  show, as with the Wilson formula, how the five-component 
model goes continuously with the dimension from a q4-like model close to four 
dimensions to a nonlinear c+-model close to two dimensions. We also observe that the 
kinetic parts f and g become singular when d + 2 .  These singularities come from the 
derivatives of the potential, which tends to be deeply peaked in order to approximate 
the nonlinear c+-model S,. For the l / v  exponent, we are very close to the 4--E 
expansion, but we do not see any tendency to recover the 2 +  E expansion. For the 7 
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v 

Figure 20. The function g ( q )  at the fixed point at 
three dimensions. In order of decreasing dash size, 
we have the models n = 1 (full curve), 3, 5 ,  7, 10, 15, 
20. 

0 2 4 6 8 
v 

Figure 21. Probability P of cp at the fixed point at 
three dimensions. In order of decreasing dash size, 
we have the models n = 1 (full curve), 3, 5 ,  7, 10, 15, 
20. 

1 

1 6 )  

0 5 10 15 20 
n 

Figure 22. ( a )  Critical exponent v at three dimensions as a function of the number of 
components of the model. ( b )  Critical exponent q at three dimensions as a function of 
the number of components of the model. The full  circles denote the numerical calculations, 
the full (respectively, long-broken) curve denotes the E expansion to first order (respectively 
order e4) ,  the open circles indicate the A expansion of Le Guillou and Zinn-Justin, the 
open squares represent the high-temperature expansion, and the dotted (respectively, 
short-broken) curve denotes the l / n  expansion at order l / n  (respectively, l / n 2  for Y and 
11n3 for q). 

exponent, the 4 - E expansion at first order is out by a factor of 3 (see below), and  7 
seems to diverge for d + 2 .  Thus, the Golner formulae miss something when the 
potential and  W become singular; this is quite normal because we used a Taylor 
expansion at first order to derive it. 
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For the one-component model, the surprising fact is the quasi-independence of 
P( 9) from the dimension, despite the fact that Q and f vary strongly. Compared with 
the Wilson formula, the introduction of derivativesin the formulae completely smoothes 
the potential and P(q) when d + 2 .  The fact that, up to two dimensions, the potential 
is cp4-like can explain the success of the 4- E expansion as far as E = 2 .  However, for 
d = 1.7, we observe the appearance of oscillations, as with the Wilson formula for 
d s 2.3, indicating that the potential becomes singular at lower dimension (it has not 
been possible to obtain the convergence for d s 1.5). The exponent 1 / v  behaves as 
expected and agrees well with Onsager’s result at two dimensions. For the r )  exponent, 
we have similar results as for the five-component model (but here the lower critical 
dimension is 1). The calculations made with C ( d )  and p ( d )  compared with C = p = a ,  
show the very weak dependences of the results on the value of these constants, despite 
what the 4 - E expansion can suggest for the r )  exponent. 

From this analysis regarding the dimension for a model with continuous symmetry 
and a model with discrete symmetry, we will keep in mind that the Golner formulae 
give very good results when the Hamiltonian is sufficiently smooth. 

For Q, P and v, the results at three dimensions for various models give almost 
identical results compared with the Wilson formula. For n = 1, the function g is 
absorbed in f, which explains the discrepancy for f between n = 1 and n > 1. The v 
exponent is very close to the 4- E expansion, but the r )  exponent is three times bigger 
compared to the :same expansion. However, at three dimensions, for n = 1, 2 and 3, 
we dispose of higher-order perturbation expansions, i.e. high-temperature expansion, 
4- E expansion Borel transformed [ 151, and expansion in the coupling constant A also 
Borel transformed. This last method is presented in an article by Le Guillou and 
Zinn-Justin [16]; this article includes also a table of the results obtained by the other 
methods, as well as experimental data. We also have at our disposal numerical Monte 
Carlo RG on the king model [17], and l / n  expansion at order l / n 3  [18]. The main 
results are summed up in the table below and in the graph for v and r). For the most 
studied case, the Ising and the Heisenberg model, our results are summarised in 
Table 1. 

Table 1. Comparison of different analyses of the n = 1 and n = 3 models. 

n = l  n = 3  

v tl v r) 

Our numerical result: 0.61 0.042 0.654 0.043 
High-temperature 0.638 z 0.002 0.041 iO.01 0.70 * 0.02 0.040 z 0.008 
Expansion in A 0.630*00.0015 0.03 1 i 0.004 0.705 z 0.0030 0.033 i 0.004 
Expansion in E [ 1 5 ]  0.6305 z 0.0025 0.037 i 0.003 0.710i0.007 0.040 = 0.003 
lsing [I71 0.629 2 0.004 0.03 1 x 0.005 

The agreement is very impressive. For the v exponent, all the methods give similar 
results, although ours slightly underestimate v. By contrast, the r )  exponent is very 
difficult to evaluate analytically but the program converges rapidly to a stable value. 
This exponent is certainly a fine test of a calculation. I t  shows that the E expansion 
at first order is not sufficient, but all the other methods give results inside the error bars. 
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On the other hand, the result for 7 seems to deteriorate for large n, if we compare 
it with the E expansion to fourth order [ 1 4 ] ,  or to the l / n  expansion to third order 
[18]. But for the exponent v the difference is not so large. 

As a conclusion for these numerical calculations with the Golner formulae, we 
keep in mind the very good agreement for the critical exponents compared with the 
calculations made with sophisticated methods of field theory. This shows that the 
Golner formulae include the essential part of the physics when the Hamiltonian is 
sufficiently smooth. 
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